Skip to content

datasets

DataFile dataclass

Source code in hdxms_datasets/datasets.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@dataclass(frozen=True)
class DataFile:
    name: str

    format: Literal["HDExaminer_v3", "DynamX_v3_state", "DynamX_v3_cluster"]

    filepath_or_buffer: Union[Path, StringIO]

    extension: Optional[str] = None
    """File extension, e.g. .csv, in case of a file-like object"""

    def read(self) -> nw.DataFrame:
        if isinstance(self.filepath_or_buffer, StringIO):
            extension = self.extension
            assert isinstance(extension, str), "File-like object must have an extension"
        else:
            extension = self.filepath_or_buffer.suffix[1:]

        if extension == "csv":
            return read_csv(self.filepath_or_buffer)
        else:
            raise ValueError(f"Invalid file extension {self.extension!r}")

extension: Optional[str] = None class-attribute instance-attribute

File extension, e.g. .csv, in case of a file-like object

DataSet dataclass

Source code in hdxms_datasets/datasets.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
@dataclass
class DataSet:
    data_id: str
    """Unique identifier for the dataset"""

    data_files: dict[str, DataFile]
    """Dictionary of data files"""

    hdx_specification: dict
    """Dictionary with HDX-MS state specification"""

    metadata: dict = field(default_factory=dict)

    peptides: dict[tuple[str, str], Peptides] = field(init=False, default_factory=dict)

    def __post_init__(self):
        # create peptide dictionary
        peptides = {}
        for state, state_spec in self.hdx_specification["states"].items():
            for peptide_set, peptide_spec in state_spec["peptides"].items():
                peptides[(state, peptide_set)] = Peptides(
                    data_file=self.data_files[peptide_spec["data_file"]],
                    filters=peptide_spec["filters"],
                    metadata=peptide_spec.get("metadata", {}),
                    protein=peptide_spec.get("protein", {}),
                )
        self.peptides = peptides

    def __getitem__(self, key: tuple[str, str]) -> Peptides:
        """
        Get the Peptides object for a given state and peptide set.

        Args:
            key: Tuple of state name and peptide set name.

        Returns:
            Peptides object for the given state and peptide set.

        """
        return self.peptides[key]

    @classmethod
    def from_spec(
        cls,
        hdx_spec: dict,
        data_dir: Path,
        data_id: Optional[str] = None,
        metadata: Optional[dict] = None,
    ):
        data_id = data_id or uuid.uuid4().hex
        data_files = process.parse_data_files(hdx_spec["data_files"], data_dir)

        return cls(
            data_id=data_id,
            data_files=data_files,
            hdx_specification=hdx_spec,
            metadata=metadata or {},
        )

    @property
    def state_spec(self) -> dict:
        return self.hdx_specification["states"]

    @property
    def states(self) -> list[str]:
        return list(self.state_spec.keys())

    @property
    def peptides_per_state(self) -> dict[str, list[str]]:
        """Dictionary of state names and list of peptide sets for each state"""
        return {state: list(spec["peptides"]) for state, spec in self.state_spec.items()}

    def get_peptides(self, state: str | int, peptide_set: str) -> Peptides:
        """
        Get the Peptides object for a given state and peptide set.

        Args:
            state: State name.
            peptide_set: Name of the peptide set.

        Returns:
            Peptides object for the given state and peptide set.

        """
        state = self.states[state] if isinstance(state, int) else state
        return self.peptides[(state, peptide_set)]

    def describe(
        self,
        peptide_template: Optional[str] = "Total peptides: $num_peptides, timepoints: $timepoints",
        return_type: Union[Type[str], type[dict]] = str,
    ) -> Union[dict, str]:
        def fmt_t(val: str | float | int) -> str:
            if isinstance(val, str):
                return val
            elif isinstance(val, (int, float)):
                return f"{val:.1f}"
            else:
                raise TypeError(f"Invalid type {type(val)} for value {val!r}")

        output_dict = {}
        for state, peptide_types in self.peptides_per_state.items():
            state_desc = {}
            if peptide_template:
                for peptide_set_name in peptide_types:
                    peptides = self.peptides[(state, peptide_set_name)]
                    peptide_df = peptides.load()
                    timepoints = peptide_df["exposure"].unique()
                    mapping = {
                        "num_peptides": len(peptide_df),
                        "num_timepoints": len(timepoints),
                        "timepoints": ", ".join([fmt_t(t) for t in timepoints]),
                    }
                    mapping["timepoints"]
                    state_desc[peptide_set_name] = Template(peptide_template).substitute(**mapping)

            output_dict[state] = state_desc

        if return_type is str:
            return yaml.dump(output_dict, sort_keys=False)
        elif return_type is dict:
            return output_dict
        else:
            raise TypeError(f"Invalid return type {return_type!r}")

    def cite(self) -> str:
        """
        Returns citation information
        """

        raise NotImplementedError("Citation information is not yet implemented")
        try:
            return self.metadata["publications"]
        except KeyError:
            return "No publication information available"

    def __len__(self) -> int:
        return len(self.states)

data_files: dict[str, DataFile] instance-attribute

Dictionary of data files

data_id: str instance-attribute

Unique identifier for the dataset

hdx_specification: dict instance-attribute

Dictionary with HDX-MS state specification

peptides_per_state: dict[str, list[str]] property

Dictionary of state names and list of peptide sets for each state

__getitem__(key)

Get the Peptides object for a given state and peptide set.

Parameters:

Name Type Description Default
key tuple[str, str]

Tuple of state name and peptide set name.

required

Returns:

Type Description
Peptides

Peptides object for the given state and peptide set.

Source code in hdxms_datasets/datasets.py
186
187
188
189
190
191
192
193
194
195
196
197
def __getitem__(self, key: tuple[str, str]) -> Peptides:
    """
    Get the Peptides object for a given state and peptide set.

    Args:
        key: Tuple of state name and peptide set name.

    Returns:
        Peptides object for the given state and peptide set.

    """
    return self.peptides[key]

cite()

Returns citation information

Source code in hdxms_datasets/datasets.py
283
284
285
286
287
288
289
290
291
292
def cite(self) -> str:
    """
    Returns citation information
    """

    raise NotImplementedError("Citation information is not yet implemented")
    try:
        return self.metadata["publications"]
    except KeyError:
        return "No publication information available"

get_peptides(state, peptide_set)

Get the Peptides object for a given state and peptide set.

Parameters:

Name Type Description Default
state str | int

State name.

required
peptide_set str

Name of the peptide set.

required

Returns:

Type Description
Peptides

Peptides object for the given state and peptide set.

Source code in hdxms_datasets/datasets.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def get_peptides(self, state: str | int, peptide_set: str) -> Peptides:
    """
    Get the Peptides object for a given state and peptide set.

    Args:
        state: State name.
        peptide_set: Name of the peptide set.

    Returns:
        Peptides object for the given state and peptide set.

    """
    state = self.states[state] if isinstance(state, int) else state
    return self.peptides[(state, peptide_set)]

Peptides dataclass

Source code in hdxms_datasets/datasets.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
@dataclass
class Peptides:
    data_file: DataFile
    filters: dict[str, ValueType | list[ValueType]]

    metadata: dict  #
    protein: dict

    _cache: dict[tuple[bool, bool, bool, bool], nw.DataFrame] = field(
        init=False, default_factory=dict
    )

    def load(self, convert=True, aggregate=True, sort=True, drop_null=True) -> nw.DataFrame:
        cache_key = (convert, aggregate, sort, drop_null)
        if cache_key in self._cache:
            return self._cache[cache_key]

        df = process.filter_from_spec(self.data_file.read(), **self.filters)

        if aggregate and self.data_file.format == "DynamX_v3_state":
            warnings.warn("DynamX_v3_state format is pre-aggregated. Aggregation will be skipped.")
            aggregate = False

        if not convert and aggregate:
            warnings.warn("Cannot aggregate data without conversion. Aggeregation will be skipped.")
            aggregate = False

        if not convert and sort:
            warnings.warn("Cannot sort data without conversion. Sorting will be skipped.")
            sort = False

        if convert:
            if self.data_file.format == "HDExaminer_v3":
                df = from_hdexaminer(df)
            elif self.data_file.format == "DynamX_v3_cluster":
                df = from_dynamx_cluster(df)
            elif self.data_file.format == "DynamX_v3_state":
                df = from_dynamx_state(df)
            else:
                raise ValueError(f"Invalid format {self.data_file.format!r}")

        if aggregate:
            df = process.aggregate(df)

        if sort:
            df = process.sort(df)

        if drop_null:
            df = process.drop_null_columns(df)

        self._cache[cache_key] = df

        return df

    def get_temperature(self, unit="K") -> Optional[float]:
        """Get the temperature of the experiment"""
        try:
            temperature = self.metadata["temperature"]
            return process.convert_temperature(temperature, unit)
        except KeyError:
            return None

    def get_pH(self) -> Optional[float]:
        """Get the pH of the experiment"""
        try:
            return self.metadata["pH"]
        except KeyError:
            return None

get_pH()

Get the pH of the experiment

Source code in hdxms_datasets/datasets.py
150
151
152
153
154
155
def get_pH(self) -> Optional[float]:
    """Get the pH of the experiment"""
    try:
        return self.metadata["pH"]
    except KeyError:
        return None

get_temperature(unit='K')

Get the temperature of the experiment

Source code in hdxms_datasets/datasets.py
142
143
144
145
146
147
148
def get_temperature(self, unit="K") -> Optional[float]:
    """Get the temperature of the experiment"""
    try:
        temperature = self.metadata["temperature"]
        return process.convert_temperature(temperature, unit)
    except KeyError:
        return None

create_dataset(target_dir, author_name, tag=None, template_dir=TEMPLATE_DIR)

Create a dataset in the specified target directory.

Parameters:

Name Type Description Default
target_dir Path

The directory where the dataset will be created.

required
author_name str

The name of the author of the dataset.

required
tag Optional[str]

An optional tag to append to the directory name. Defaults to None.

None
template_dir Path

The directory containing the template files for the dataset. Defaults to TEMPLATE_DIR.

TEMPLATE_DIR

Returns:

Type Description
str

The id of the created dataset.

Source code in hdxms_datasets/datasets.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
def create_dataset(
    target_dir: Path,
    author_name: str,
    tag: Optional[str] = None,
    template_dir: Path = TEMPLATE_DIR,
) -> str:
    """
    Create a dataset in the specified target directory.

    Args:
        target_dir: The directory where the dataset will be created.
        author_name: The name of the author of the dataset.
        tag: An optional tag to append to the directory name. Defaults to None.
        template_dir: The directory containing the template files for the dataset. Defaults to TEMPLATE_DIR.

    Returns:
        The id of the created dataset.

    """
    dirname = str(int(time.time()))

    if tag:
        dirname += f"_{tag}"

    dirname += f"_{author_name}"

    target_dir.mkdir(parents=True, exist_ok=True)
    target_dir = target_dir / dirname

    shutil.copytree(template_dir, target_dir)

    (target_dir / "readme.md").write_text(f"# {dirname}")

    return dirname