Skip to content

datasets

DataSet dataclass

Bases: object

Source code in hdxms_datasets/datasets.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
@dataclass(frozen=True)
class DataSet(object):
    data_id: str
    """Unique identifier for the dataset"""

    data_files: dict[str, DataFile]
    """Dictionary of data files"""

    hdx_spec: dict
    """Dictionary with HDX-MS state specification"""

    metadata: dict = field(default_factory=dict)
    """Optional metadata"""

    _cache: dict[tuple[str, str], pd.DataFrame] = field(init=False, default_factory=dict)

    @classmethod
    def from_spec(
        cls,
        hdx_spec: dict,
        data_dir: Path,
        data_id: Optional[str] = None,
        metadata: Optional[dict] = None,
    ):
        metadata = metadata or {}
        data_id = data_id or uuid.uuid4().hex
        data_files = parse_data_files(hdx_spec["data_files"], data_dir)

        return cls(data_id, data_files, hdx_spec, metadata)

    @property
    def state_spec(self) -> dict:
        return self.hdx_spec["states"]

    @property
    def states(self) -> list[str]:
        return list(self.state_spec.keys())

    def get_metadata(self, state: Union[str, int]) -> dict:
        """
        Returns metadata for a given state
        """

        state = self.states[state] if isinstance(state, int) else state
        return {**self.hdx_spec.get("metadata", {}), **self.state_spec[state].get("metadata", {})}

    @property
    def peptides_per_state(self) -> dict[str, list[str]]:
        """Dictionary of state names and list of peptide sets for each state"""
        return {state: list(spec["peptides"]) for state, spec in self.state_spec.items()}

    @property
    def peptide_sets(self) -> dict[str, dict[str, pd.DataFrame]]:
        peptides_dfs = {}
        peptides_per_state = {
            state: list(spec["peptides"]) for state, spec in self.state_spec.items()
        }
        for state, peptides in peptides_per_state.items():
            peptides_dfs[state] = {
                peptide_set: self.load_peptides(state, peptide_set) for peptide_set in peptides
            }

        return peptides_dfs

    def load(self) -> dict[str, dict[str, pd.DataFrame]]:
        """
        Loads all peptide sets for all states.

        Returns:
            Dictionary of state names and dictionary of peptide sets for each state.
        """
        return {state: self.load_state(state) for state in self.states}

    def load_state(self, state: Union[str, int]) -> dict[str, pd.DataFrame]:
        """
        Load all peptide sets for a given state.

        Args:
            state: State name or index of state in the HDX specification file.

        Returns:
            Dictionary of peptide sets for a given state.
        """

        state = self.states[state] if isinstance(state, int) else state
        return {
            peptide_set: self.load_peptides(state, peptide_set)
            for peptide_set in self.state_spec[state]["peptides"].keys()
        }

    def load_peptides(self, state: Union[str, int], peptides: str) -> pd.DataFrame:
        """
        Load a single set of peptides for a given state.

        Args:
            state: State name or index of state in the HDX specification file.
            peptides: Name of the peptide set.

        Returns:
            DataFrame with peptide data.
        """

        state = self.states[state] if isinstance(state, int) else state
        return self._load_peptides(state, peptides)

    def _load_peptides(self, state: str, peptides: str) -> pd.DataFrame:
        """
        Load a single set of peptides for a given state.

        Returned dataframes are cached for faster subsequent access.

        Args:
            state: State name.
            peptides: Name of the peptide set.

        Returns:
            DataFrame with peptide data.

        """

        if (state, peptides) in self._cache:
            return self._cache[(state, peptides)]

        peptide_spec = self.state_spec[state]["peptides"][peptides]
        df = self.data_files[peptide_spec["data_file"]].data

        filter_fields = {"state", "exposure", "query", "dropna"}
        peptide_df = filter_peptides(
            df, **{k: v for k, v in peptide_spec.items() if k in filter_fields}
        )

        self._cache[(state, peptides)] = peptide_df

        return peptide_df

    def describe(
        self,
        peptide_template: Optional[
            str
        ] = "Total peptides: $num_peptides, timepoints: $num_timepoints",
        metadata_template: Optional[str] = "Temperature: $temperature, pH: $pH",
        return_type: Union[Type[str], type[dict]] = str,
    ) -> Union[dict, str]:
        output_dict = {}
        for state, peptides in self.peptides_per_state.items():
            state_desc = {}
            if peptide_template:
                for peptide_set_name in peptides:
                    peptide_df = self.peptide_sets[state][peptide_set_name]
                    timepoints = peptide_df["exposure"].unique()
                    mapping = {
                        "num_peptides": len(peptide_df),
                        "num_timepoints": len(timepoints),
                        "timepoints": ", ".join([f"{t:.1f}" for t in timepoints]),
                    }
                    mapping["timepoints"]
                    state_desc[peptide_set_name] = Template(peptide_template).substitute(**mapping)
            if metadata_template:
                mapping = self.get_metadata(state)
                if temperature_dict := mapping.pop("temperature", None):
                    mapping["temperature"] = f"{convert_temperature(temperature_dict)} C"

                state_desc["metadata"] = Template(metadata_template).substitute(**mapping)

            output_dict[state] = state_desc

        if return_type == str:
            return yaml.dump(output_dict, sort_keys=False)
        elif return_type == dict:
            return output_dict
        else:
            raise TypeError(f"Invalid return type {return_type!r}")

    def cite(self) -> str:
        """
        Returns citation information
        """
        try:
            return self.metadata["publications"]
        except KeyError:
            return "No publication information available"

    def __len__(self) -> int:
        return len(self.states)

data_files: dict[str, DataFile] instance-attribute

Dictionary of data files

data_id: str instance-attribute

Unique identifier for the dataset

hdx_spec: dict instance-attribute

Dictionary with HDX-MS state specification

metadata: dict = field(default_factory=dict) class-attribute instance-attribute

Optional metadata

peptides_per_state: dict[str, list[str]] property

Dictionary of state names and list of peptide sets for each state

cite()

Returns citation information

Source code in hdxms_datasets/datasets.py
257
258
259
260
261
262
263
264
def cite(self) -> str:
    """
    Returns citation information
    """
    try:
        return self.metadata["publications"]
    except KeyError:
        return "No publication information available"

get_metadata(state)

Returns metadata for a given state

Source code in hdxms_datasets/datasets.py
122
123
124
125
126
127
128
def get_metadata(self, state: Union[str, int]) -> dict:
    """
    Returns metadata for a given state
    """

    state = self.states[state] if isinstance(state, int) else state
    return {**self.hdx_spec.get("metadata", {}), **self.state_spec[state].get("metadata", {})}

load()

Loads all peptide sets for all states.

Returns:

Type Description
dict[str, dict[str, DataFrame]]

Dictionary of state names and dictionary of peptide sets for each state.

Source code in hdxms_datasets/datasets.py
148
149
150
151
152
153
154
155
def load(self) -> dict[str, dict[str, pd.DataFrame]]:
    """
    Loads all peptide sets for all states.

    Returns:
        Dictionary of state names and dictionary of peptide sets for each state.
    """
    return {state: self.load_state(state) for state in self.states}

load_peptides(state, peptides)

Load a single set of peptides for a given state.

Parameters:

Name Type Description Default
state Union[str, int]

State name or index of state in the HDX specification file.

required
peptides str

Name of the peptide set.

required

Returns:

Type Description
DataFrame

DataFrame with peptide data.

Source code in hdxms_datasets/datasets.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def load_peptides(self, state: Union[str, int], peptides: str) -> pd.DataFrame:
    """
    Load a single set of peptides for a given state.

    Args:
        state: State name or index of state in the HDX specification file.
        peptides: Name of the peptide set.

    Returns:
        DataFrame with peptide data.
    """

    state = self.states[state] if isinstance(state, int) else state
    return self._load_peptides(state, peptides)

load_state(state)

Load all peptide sets for a given state.

Parameters:

Name Type Description Default
state Union[str, int]

State name or index of state in the HDX specification file.

required

Returns:

Type Description
dict[str, DataFrame]

Dictionary of peptide sets for a given state.

Source code in hdxms_datasets/datasets.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def load_state(self, state: Union[str, int]) -> dict[str, pd.DataFrame]:
    """
    Load all peptide sets for a given state.

    Args:
        state: State name or index of state in the HDX specification file.

    Returns:
        Dictionary of peptide sets for a given state.
    """

    state = self.states[state] if isinstance(state, int) else state
    return {
        peptide_set: self.load_peptides(state, peptide_set)
        for peptide_set in self.state_spec[state]["peptides"].keys()
    }

create_dataset(target_dir, author_name, tag=None, template_dir=TEMPLATE_DIR)

Create a dataset in the specified target directory.

Parameters:

Name Type Description Default
target_dir Path

The directory where the dataset will be created.

required
author_name str

The name of the author of the dataset.

required
tag Optional[str]

An optional tag to append to the directory name. Defaults to None.

None
template_dir Path

The directory containing the template files for the dataset. Defaults to TEMPLATE_DIR.

TEMPLATE_DIR

Returns:

Type Description
str

The id of the created dataset.

Source code in hdxms_datasets/datasets.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def create_dataset(
    target_dir: Path,
    author_name: str,
    tag: Optional[str] = None,
    template_dir: Path = TEMPLATE_DIR,
) -> str:
    """
    Create a dataset in the specified target directory.

    Args:
        target_dir: The directory where the dataset will be created.
        author_name: The name of the author of the dataset.
        tag: An optional tag to append to the directory name. Defaults to None.
        template_dir: The directory containing the template files for the dataset. Defaults to TEMPLATE_DIR.

    Returns:
        The id of the created dataset.

    """
    dirname = str(int(time.time()))

    if tag:
        dirname += f"_{tag}"

    dirname += f"_{author_name}"

    target_dir.mkdir(parents=True, exist_ok=True)
    target_dir = target_dir / dirname

    shutil.copytree(template_dir, target_dir)

    (target_dir / "readme.md").write_text(f"# {dirname}")

    return dirname