Skip to content

models

DataRepository

Bases: BaseModel

Information about the data repository where the source data is published

Source code in hdxms_datasets/models.py
277
278
279
280
281
282
283
284
class DataRepository(BaseModel):
    """Information about the data repository where the source data is published"""

    name: Annotated[str, Field(..., description="Repository name")]  # ie Pride, Zenodo,
    url: Annotated[Optional[HttpUrl], Field(None, description="Repository URL")]
    identifier: Annotated[Optional[str], Field(None, description="Repository entry identifier")]
    doi: Annotated[Optional[str], Field(None, description="Repository DOI")]
    description: Annotated[Optional[str], Field(None, description="Repository description")]

DeuterationType

Bases: str, Enum

Type of the peptide

Source code in hdxms_datasets/models.py
129
130
131
132
133
134
class DeuterationType(str, Enum):
    """Type of the peptide"""

    partially_deuterated = "partially_deuterated"
    fully_deuterated = "fully_deuterated"
    non_deuterated = "non_deuterated"

HDXDataSet

Bases: BaseModel

HDX-MS dataset containing multiple states

Source code in hdxms_datasets/models.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
class HDXDataSet(BaseModel):
    """HDX-MS dataset containing multiple states"""

    # Basic information
    description: Annotated[Optional[str], Field(None, description="Dataset description")]

    states: list[State] = Field(description="List of HDX states in the dataset")
    structure: Annotated[Structure, Field(description="Structural model file path")]
    protein_identifiers: Annotated[
        ProteinIdentifiers, Field(description="Protein identifiers (UniProt, etc.)")
    ]
    metadata: Annotated[DatasetMetadata, Field(description="Dataset metadata")]
    file_hash: Annotated[
        Optional[str], Field(None, init=False, description="Hash of the files in the dataset")
    ]

    @model_validator(mode="after")
    def compute_file_hash(self):
        """Compute a hash of the dataset based on its data files"""
        if any(not p.exists() for p in self.data_files):
            self.file_hash = None
            return self

        self.file_hash = self.hash_files()[:16]  # Shorten to 16 characters

        return self

    def hash_files(self) -> str:
        return hash_files(self.data_files)  # Ensure files are sorted and hashed consistently

    def validate_file_integrity(self) -> bool:
        """match hash of files with the stored hash"""
        if self.file_hash is None:
            return False
        current_hash = self.hash_files()
        return current_hash.startswith(self.file_hash)

    def get_state(self, state: str | int) -> State:
        """Get a specific state by name or index"""
        if isinstance(state, int):
            return self.states[state]
        elif isinstance(state, str):
            for s in self.states:
                if s.name == state:
                    return s
        raise ValueError(f"State '{state}' not found in dataset.")

    @property
    def data_files(self) -> list[Path]:
        """List of all data files in the dataset"""
        return sorted(set(extract_values_by_types(self, Path)))

    @classmethod
    def from_json(
        cls,
        json_str: str,
        dataset_root: Optional[Path] = None,
    ) -> HDXDataSet:
        """Load dataset from JSON string"""
        if dataset_root is None:
            context = {}
        else:
            context = {"dataset_root": dataset_root}
        return cls.model_validate_json(json_str, context=context)

data_files: list[Path] property

List of all data files in the dataset

compute_file_hash()

Compute a hash of the dataset based on its data files

Source code in hdxms_datasets/models.py
352
353
354
355
356
357
358
359
360
361
@model_validator(mode="after")
def compute_file_hash(self):
    """Compute a hash of the dataset based on its data files"""
    if any(not p.exists() for p in self.data_files):
        self.file_hash = None
        return self

    self.file_hash = self.hash_files()[:16]  # Shorten to 16 characters

    return self

from_json(json_str, dataset_root=None) classmethod

Load dataset from JSON string

Source code in hdxms_datasets/models.py
388
389
390
391
392
393
394
395
396
397
398
399
@classmethod
def from_json(
    cls,
    json_str: str,
    dataset_root: Optional[Path] = None,
) -> HDXDataSet:
    """Load dataset from JSON string"""
    if dataset_root is None:
        context = {}
    else:
        context = {"dataset_root": dataset_root}
    return cls.model_validate_json(json_str, context=context)

get_state(state)

Get a specific state by name or index

Source code in hdxms_datasets/models.py
373
374
375
376
377
378
379
380
381
def get_state(self, state: str | int) -> State:
    """Get a specific state by name or index"""
    if isinstance(state, int):
        return self.states[state]
    elif isinstance(state, str):
        for s in self.states:
            if s.name == state:
                return s
    raise ValueError(f"State '{state}' not found in dataset.")

validate_file_integrity()

match hash of files with the stored hash

Source code in hdxms_datasets/models.py
366
367
368
369
370
371
def validate_file_integrity(self) -> bool:
    """match hash of files with the stored hash"""
    if self.file_hash is None:
        return False
    current_hash = self.hash_files()
    return current_hash.startswith(self.file_hash)

PeptideFormat

Bases: str, Enum

Format of the peptide data

Source code in hdxms_datasets/models.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class PeptideFormat(str, Enum):
    """Format of the peptide data"""

    DynamX_v3_state = "DynamX_v3_state"
    DynamX_v3_cluster = "DynamX_v3_cluster"
    DynamX_vx_state = "DynamX_vx_state"
    HDExaminer_v3 = "HDExaminer_v3"
    OpenHDX = "OpenHDX"

    @classmethod
    def identify(cls, df: nw.DataFrame) -> PeptideFormat | None:
        """Identify format from DataFrame"""
        from hdxms_datasets.formats import identify_format

        fmt = identify_format(df)
        if fmt:
            return cls(fmt.name)
        return None

identify(df) classmethod

Identify format from DataFrame

Source code in hdxms_datasets/models.py
118
119
120
121
122
123
124
125
126
@classmethod
def identify(cls, df: nw.DataFrame) -> PeptideFormat | None:
    """Identify format from DataFrame"""
    from hdxms_datasets.formats import identify_format

    fmt = identify_format(df)
    if fmt:
        return cls(fmt.name)
    return None

Peptides

Bases: BaseModel

Information about HDX-MS peptides

Source code in hdxms_datasets/models.py
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
class Peptides(BaseModel):
    """Information about HDX-MS peptides"""

    data_file: DataFilePath
    data_format: Annotated[PeptideFormat, Field(description="Data format (e.g., OpenHDX)")]
    deuteration_type: Annotated[
        DeuterationType, Field(description="Type of the peptide (e.g., fully_deuterated)")
    ]
    chain: Annotated[Optional[list[str]], Field(description="Chain identifiers")] = None
    filters: Annotated[
        dict[str, ValueType | list[ValueType]],
        Field(default_factory=dict, description="Filters applied to the data"),
    ]
    pH: Annotated[
        Optional[float], Field(description="pH (read, uncorrected) of the experiment")
    ] = None
    temperature: Annotated[Optional[float], Field(description="Temperature in Kelvin")] = None
    d_percentage: Annotated[Optional[float], Field(description="Deuteration percentage")] = None
    ionic_strength: Annotated[Optional[float], Field(description="Ionic strength in Molar")] = None

    def load(
        self,
        convert: bool = True,
        aggregate: bool | None = None,
        sort_rows: bool = True,
        sort_columns: bool = True,
        drop_null: bool = True,
    ) -> nw.DataFrame:
        if self.data_file.exists():
            from hdxms_datasets.loader import load_peptides

            return load_peptides(
                self,
                convert=convert,
                aggregate=aggregate,
                sort_rows=sort_rows,
                sort_columns=sort_columns,
                drop_null=drop_null,
            )
        else:
            raise FileNotFoundError(f"Data file {self.data_file} does not exist.")

ProteinIdentifiers

Bases: BaseModel

general protein information

Source code in hdxms_datasets/models.py
180
181
182
183
184
185
186
187
188
189
class ProteinIdentifiers(BaseModel):
    """general protein information"""

    uniprot_accession_number: Annotated[Optional[str], Field(None, description="UniProt ID")] = None
    uniprot_entry_name: Annotated[Optional[str], Field(None, description="UniProt entry name")] = (
        None
    )
    protein_name: Annotated[Optional[str], Field(None, description="Recommended protein name")] = (
        None
    )

ProteinState

Bases: BaseModel

Protein information for a specific state

Source code in hdxms_datasets/models.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class ProteinState(BaseModel):
    """Protein information for a specific state"""

    sequence: Annotated[str | list[str], Field(description="Amino acid sequence")]
    n_term: Annotated[int, Field(description="N-terminal residue number")]
    c_term: Annotated[int, Field(description="C-terminal residue number")]
    mutations: Annotated[Optional[list[str]], Field(description="List of mutations")] = None
    oligomeric_state: Annotated[Optional[int], Field(description="Oligomeric state")] = None
    ligand: Annotated[Optional[str], Field(description="Bound ligand information")] = None

    @model_validator(mode="after")
    def check_sequence(self):
        if len(self.sequence) != self.c_term - self.n_term + 1:
            raise ValueError("Sequence length does not match N-term and C-term residue numbers.")
        return self

Publication

Bases: BaseModel

Publication information

Source code in hdxms_datasets/models.py
265
266
267
268
269
270
271
272
273
274
class Publication(BaseModel):
    """Publication information"""

    title: Optional[str] = None
    authors: Optional[List[str]] = None
    journal: Optional[str] = None
    year: Optional[int] = None
    doi: Optional[str] = None
    pmid: Optional[str] = None
    url: Optional[str] = None

State

Bases: BaseModel

Information about HDX-MS state

Source code in hdxms_datasets/models.py
209
210
211
212
213
214
215
class State(BaseModel):
    """Information about HDX-MS state"""

    name: Annotated[str, Field(description="State name")]
    peptides: list[Peptides] = Field(..., description="List of peptides in this state")
    description: Annotated[str, Field(description="State description")] = ""  # TODO max length?
    protein_state: ProteinState = Field(..., description="Protein information for this state")

Structure

Bases: BaseModel

Structural model file information

Source code in hdxms_datasets/models.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
class Structure(BaseModel):
    """Structural model file information"""

    data_file: DataFilePath
    format: Annotated[str, Field(description="Format of the structure file (e.g., PDB, mmCIF)")]
    description: Annotated[Optional[str], Field(description="Description of the structure")] = None

    # source database identifiers
    pdb_id: Annotated[Optional[str], Field(None, description="RCSB PDB ID")] = None
    alphafold_id: Annotated[Optional[str], Field(None, description="AlphaFold ID")] = None

    auth_residue_numbers: Annotated[
        bool, Field(default=False, description="Use author residue numbers")
    ] = False
    residue_offset: Annotated[
        int,
        Field(
            default=0,
            description="Offset for residue numbering; structure numbers = hdx numbers + offset",
        ),
    ] = 0
    auth_chain_labels: Annotated[
        bool, Field(default=False, description="Use author chain labels")
    ] = False

    def pdbemolstar_custom_data(self) -> dict[str, Any]:
        """
        Returns a dictionary with custom data for PDBeMolstar visualization.
        """

        if self.format in ["bcif"]:
            binary = True
        else:
            binary = False

        if self.data_file.is_file():
            data = self.data_file.read_bytes()
        else:
            raise ValueError(f"Path {self.data_file} is not a file.")

        return {
            "data": data,
            "format": self.format,
            "binary": binary,
        }

pdbemolstar_custom_data()

Returns a dictionary with custom data for PDBeMolstar visualization.

Source code in hdxms_datasets/models.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def pdbemolstar_custom_data(self) -> dict[str, Any]:
    """
    Returns a dictionary with custom data for PDBeMolstar visualization.
    """

    if self.format in ["bcif"]:
        binary = True
    else:
        binary = False

    if self.data_file.is_file():
        data = self.data_file.read_bytes()
    else:
        raise ValueError(f"Path {self.data_file} is not a file.")

    return {
        "data": data,
        "format": self.format,
        "binary": binary,
    }

extract_values_by_types(obj, target_types)

Recursively extract all values of specified type(s) from a nested structure. This function can handle Pydantic models, lists, tuples, sets, and dictionaries.

Parameters:

Name Type Description Default
obj Any

Pydantic model instance or any nested structure

required
target_types Type | tuple[Type, ...]

Single type or tuple of types to search for

required

Returns:

Type Description
list[Any]

List of all values matching any of the target types

Source code in hdxms_datasets/models.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def extract_values_by_types(obj: Any, target_types: Type | tuple[Type, ...]) -> list[Any]:
    """
    Recursively extract all values of specified type(s) from a nested structure.
    This function can handle Pydantic models, lists, tuples, sets, and dictionaries.

    Args:
        obj: Pydantic model instance or any nested structure
        target_types: Single type or tuple of types to search for

    Returns:
        List of all values matching any of the target types
    """
    values = []

    # Normalize target_types to tuple
    if not isinstance(target_types, tuple):
        target_types = (target_types,)

    # Check if current object is of any target type
    if isinstance(obj, target_types):
        values.append(obj)

    elif isinstance(obj, BaseModel):
        # Iterate through all field values in the Pydantic model
        for field_name, field_value in obj.__dict__.items():
            values.extend(extract_values_by_types(field_value, target_types))

    elif isinstance(obj, (list, tuple, set)):
        # Handle sequences
        for item in obj:
            values.extend(extract_values_by_types(item, target_types))

    elif isinstance(obj, dict):
        # Handle dictionaries (both keys and values)
        for key, value in obj.items():
            values.extend(extract_values_by_types(key, target_types))
            values.extend(extract_values_by_types(value, target_types))

    return values

hash_files(data_files)

Compute a hash of all data files in the dataset

Source code in hdxms_datasets/models.py
87
88
89
90
91
92
93
94
95
96
97
98
def hash_files(data_files: Iterable[Path]) -> str:
    """Compute a hash of all data files in the dataset"""
    hash_obj = hashlib.sha256()
    files = sorted(data_files, key=lambda p: p.as_posix())  # Sort to ensure consistent order
    for f in files:
        if f.suffix in TEXT_FILE_FORMATS:
            content = f.read_text(encoding="utf-8").replace("\r\n", "\n").replace("\r", "\n")
            hash_obj.update(content.encode("utf-8"))
        else:
            hash_obj.update(f.read_bytes())

    return hash_obj.hexdigest()