process
aggregate(df)
Aggregate replicates by intensity-weighted average.
Columns which are intensity-weighted averaged are: centroid_mz, centroid_mass, rt.
All other columns are pass through if they are unique, otherwise set to None
.
Also adds n_replicates and n_cluster columns.
Source code in hdxms_datasets/process.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
|
aggregate_columns(df, columns, by=['start', 'end', 'exposure'])
Aggregate the specified columns by intensity-weighted average. The dataframe must have a column named 'intensity' for weighting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame to aggregate. |
required |
columns
|
list[str]
|
List of columns to aggregate. |
required |
by
|
list[str]
|
List of columns to group by. |
['start', 'end', 'exposure']
|
Source code in hdxms_datasets/process.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
apply_filters(df, **filters)
Apply filters to the DataFrame based on the provided keyword arguments. Each keyword corresponds to a column name, and the value can be a single value or a list of values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The DataFrame to filter. |
required |
**filters
|
ValueType | list[ValueType]
|
Column-value pairs to filter the DataFrame. |
{}
|
Returns: Filtered DataFrame.
Source code in hdxms_datasets/process.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
compute_uptake_metrics(df, exception='ignore')
Tries to add columns to computed from other columns the DataFrame. Possible columns to add are: uptake, uptake_sd, fd_uptake, fd_uptake_sd, rfu, max_uptake.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame to add columns to. |
required |
exception
|
Literal['raise', 'warn', 'ignore']
|
How to handle exceptions when adding columns. Options are 'raise', 'warn', 'ignore'. |
'ignore'
|
Returns: DataFrame with added columns.
Source code in hdxms_datasets/process.py
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
|
drop_null_columns(df)
Drop columns that are all null from the DataFrame.
Source code in hdxms_datasets/process.py
274 275 276 277 |
|
dynamx_cluster_to_state(cluster_data, nd_exposure=0.0)
Convert dynamx cluster data to state data. Must contain only a single state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cluster_data
|
DataFrame
|
DataFrame containing dynamx cluster data. |
required |
nd_exposure
|
float
|
Exposure time for non-deuterated control. |
0.0
|
Source code in hdxms_datasets/process.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
left_join(df_left, df_right, column, prefix, include_sd=True)
Left join two DataFrames on start, end and the specified column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_left
|
DataFrame
|
Left DataFrame. |
required |
df_right
|
DataFrame
|
Right DataFrame. |
required |
column
|
str
|
Column name to join on in addition to start and end. |
required |
prefix
|
str
|
Prefix to add to the joined columns from the right DataFrame. |
required |
include_sd
|
bool
|
Whether to include the standard deviation column (column_sd) from the right DataFrame. |
True
|
Returns:
Type | Description |
---|---|
DataFrame
|
Merged DataFrame. |
Source code in hdxms_datasets/process.py
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
merge_peptide_tables(partially_deuterated, column=None, non_deuterated=None, fully_deuterated=None)
Merges peptide tables from different deuteration types into a single DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
partially_deuterated
|
DataFrame
|
DataFrame containing partially deuterated peptides. Must be provided. |
required |
column
|
Optional[str]
|
Column name to join on. If None, 'centroid_mass' is used if present, otherwise 'uptake'. |
None
|
non_deuterated
|
Optional[DataFrame]
|
Optional DataFrame containing non-deuterated peptides. |
None
|
fully_deuterated
|
Optional[DataFrame]
|
Optional DataFrame containing fully deuterated peptides. |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
Merged DataFrame. |
Source code in hdxms_datasets/process.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
|
merge_peptides(peptides, base_dir=Path.cwd())
Merge peptide tables from different deuteration types into a single DataFrame. This function is used to match control measurements to a set of partially deuterated peptides.
Supports non-deuterated (nd) and fully deuterated peptides (fd) as controls. The column used in the merge is 'centroid_mass' if present, otherwise 'uptake'. Merged columns are prefixed with 'nd_' or 'fd_'.
When to use merge_peptide_tables vs left_join
- Use
merge_peptide_tables
to merge already loaded peptide dataframes. - Use
left_join
to merge peptide dataframes with other controls / data types.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
peptides
|
list[Peptides]
|
List of Peptides objects to merge. Must contain one partially deuterated peptide. |
required |
base_dir
|
Path
|
Base directory to resolve relative paths in Peptides data_file. |
cwd()
|
Returns:
Type | Description |
---|---|
DataFrame
|
Merged DataFrame. |
Source code in hdxms_datasets/process.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
sort_columns(df, columns=OPEN_HDX_COLUMNS)
Sorts the DataFrame columns to match the specified order.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
DataFrame to sort. |
required |
columns
|
list[str]
|
List of columns in the desired order. Columns not in this list will be placed at the end. |
OPEN_HDX_COLUMNS
|
Returns:
Type | Description |
---|---|
DataFrame
|
DataFrame with columns sorted. |
Source code in hdxms_datasets/process.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
sort_rows(df)
Sorts the DataFrame by state, exposure, start, end, file.
Source code in hdxms_datasets/process.py
248 249 250 251 252 |
|
ufloat_stats(array, weights)
Calculate the weighted mean and standard deviation.
Source code in hdxms_datasets/process.py
45 46 47 48 |
|