process
aggregate_columns(df, columns, by=['start', 'end', 'exposure'])
Aggregate the DataFrame the specified columns by intensity-weighted average.
Source code in hdxms_datasets/process.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
compute_uptake_metrics(df, exception='raise')
Tries to add derived columns to the DataFrame. Possible columns to add are: uptake, uptake_sd, fd_uptake, fd_uptake_sd, rfu, max_uptake.
Source code in hdxms_datasets/process.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
drop_null_columns(df)
Drop columns that are all null from the DataFrame.
Source code in hdxms_datasets/process.py
232 233 234 235 |
|
dynamx_cluster_to_state(cluster_data, nd_exposure=0.0)
convert dynamx cluster data to state data must contain only a single state
Source code in hdxms_datasets/process.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
merge_peptides(peptides, base_dir=Path.cwd())
Merge peptide tables from different deuteration types into a single DataFrame.
Source code in hdxms_datasets/process.py
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
sort_rows(df)
Sorts the DataFrame by state, exposure, start, end, file.
Source code in hdxms_datasets/process.py
216 217 218 219 220 |
|
ufloat_stats(array, weights)
Calculate the weighted mean and standard deviation.
Source code in hdxms_datasets/process.py
45 46 47 48 |
|