process
aggregate(df)
Aggregate replicates by intensity-weighted average.
Columns which are intensity-weighted averaged are: uptake, centroid_mz, centroid_mass, rt, if present.
If no intensity column is present, replicates are averaged with equal weights.
All other columns are pass through if they are unique, otherwise set to None.
Also adds n_replicates, n_charges, and n_clusters columns.
n_replicates: Number of replicates averaged, based on the unique number of values in
the 'replicate' column
n_charges: Number of unique charged states averaged together
n_clusters: Total number of isotopic clusters averaged together regardless of whether
they are from replicate experiments or different charged states.
Source code in hdxms_datasets/process.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | |
aggregate_columns(df, columns, by=['start', 'end', 'exposure'])
Aggregate the specified columns by intensity-weighted average.
The dataframe must have a column named 'intensity' for weighting.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
DataFrame to aggregate. |
required |
columns
|
list[str]
|
List of columns to aggregate. |
required |
by
|
list[str]
|
List of columns to group by. |
['start', 'end', 'exposure']
|
Source code in hdxms_datasets/process.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | |
apply_filters(df, **filters)
Apply filters to the DataFrame based on the provided keyword arguments.
Each keyword corresponds to a column name, and the value can be a single value or a list of values.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
The DataFrame to filter. |
required |
**filters
|
ValueType | list[ValueType]
|
Column-value pairs to filter the DataFrame. |
{}
|
Returns:
Filtered DataFrame.
Source code in hdxms_datasets/process.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | |
compute_uptake_metrics(df, exception='ignore')
Tries to add columns to computed from other columns the DataFrame.
Possible columns to add are: uptake, uptake_sd, fd_uptake, fd_uptake_sd, rfu, max_uptake.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
DataFrame to add columns to. |
required |
exception
|
Literal['raise', 'warn', 'ignore']
|
How to handle exceptions when adding columns. Options are 'raise', 'warn', 'ignore'. |
'ignore'
|
Returns:
DataFrame with added columns.
Source code in hdxms_datasets/process.py
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | |
drop_null_columns(df)
Drop columns that are all null from the DataFrame.
Source code in hdxms_datasets/process.py
307 308 309 310 | |
dynamx_cluster_to_state(cluster_data, nd_exposure=0.0)
Convert dynamx cluster data to state data.
Must contain only a single state.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cluster_data
|
DataFrame
|
DataFrame containing dynamx cluster data. |
required |
nd_exposure
|
float
|
Exposure time for non-deuterated control. |
0.0
|
Source code in hdxms_datasets/process.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
left_join(df_left, df_right, select_columns, prefix, include_sd=True)
Left join two DataFrames on start, end, selecting
and the specified column.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df_left
|
DataFrame
|
Left DataFrame. |
required |
df_right
|
DataFrame
|
Right DataFrame. |
required |
select_columns
|
list[str]
|
Column names to select from the right dataframe. |
required |
prefix
|
str
|
Prefix to add to the joined columns from the right DataFrame. |
required |
include_sd
|
bool
|
Whether to include the standard deviation column (column_sd) from the right DataFrame, if available |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
Merged DataFrame. |
Source code in hdxms_datasets/process.py
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 | |
load_peptides(peptides, base_dir=Path.cwd(), convert=True, aggregate=None, sort_rows=True, sort_columns=True, drop_null=True)
Load peptides from the data file and return a Narwhals DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
peptides
|
Peptides
|
Peptides object containing metadata and file path. |
required |
base_dir
|
Path
|
Base directory to resolve relative file paths. Defaults to the current working directory. |
cwd()
|
convert
|
bool
|
Whether to convert the data to a standard format. |
True
|
aggregate
|
bool | None
|
Whether to aggregate the data. If None, will aggregate if the data is not already aggregated. |
None
|
sort_rows
|
bool
|
Whether to sort the rows. |
True
|
sort_columns
|
bool
|
Whether to sort the columns in a standard order. |
True
|
drop_null
|
bool
|
Whether to drop columns that are entirely null. |
True
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
A Narwhals DataFrame containing the loaded peptide data. |
Source code in hdxms_datasets/process.py
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | |
merge_peptide_tables(partially_deuterated, non_deuterated=None, fully_deuterated=None, select_columns=None)
Merges peptide tables from different deuteration types into a single DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
partially_deuterated
|
DataFrame
|
DataFrame containing partially deuterated peptides. Must be provided. |
required |
select_columns
|
Optional[list[str]]
|
Column names to select from the controls. If None, 'centroid_mass' and'uptake' are used, if present |
None
|
non_deuterated
|
Optional[DataFrame]
|
Optional DataFrame containing non-deuterated peptides. |
None
|
fully_deuterated
|
Optional[DataFrame]
|
Optional DataFrame containing fully deuterated peptides. |
None
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
Merged DataFrame. |
Source code in hdxms_datasets/process.py
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | |
merge_peptides(peptides, base_dir=Path.cwd())
Merge peptide tables from different deuteration types into a single DataFrame.
This function is used to match control measurements to a set of partially deuterated peptides.
Supports non-deuterated (nd) and fully deuterated peptides (fd) as controls.
The column used in the merge is 'centroid_mass' if present, otherwise 'uptake'. Merged columns are prefixed
with 'nd_' or 'fd_'.
When to use merge_peptide_tables vs left_join
- Use
merge_peptide_tablesto merge already loaded peptide dataframes. - Use
left_jointo merge peptide dataframes with other controls / data types.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
peptides
|
list[Peptides]
|
List of Peptides objects to merge. Must contain one partially deuterated peptide. |
required |
base_dir
|
Path
|
Base directory to resolve relative paths in Peptides data_file. |
cwd()
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
Merged DataFrame. |
Source code in hdxms_datasets/process.py
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 | |
sort_columns(df, columns=OPEN_HDX_COLUMNS)
Sorts the DataFrame columns to match the specified order.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
df
|
DataFrame
|
DataFrame to sort. |
required |
columns
|
list[str]
|
List of columns in the desired order. Columns not in this list will be placed at the end. |
OPEN_HDX_COLUMNS
|
Returns:
| Type | Description |
|---|---|
DataFrame
|
DataFrame with columns sorted. |
Source code in hdxms_datasets/process.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | |
sort_rows(df)
Sorts the DataFrame by state, exposure, start, end, file.
Source code in hdxms_datasets/process.py
281 282 283 284 285 | |
ufloat_stats(array, weights)
Calculate the weighted mean and standard deviation.
Source code in hdxms_datasets/process.py
45 46 47 48 | |