loss
L1Loss
Bases: Loss
L1 loss
Source code in slimfit/loss.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
LogLoss
Bases: Loss
Takes the elementwise logarithm of predicted input data
Used in combination with maximum likelihood methods
returns negative of the reductions are use in combination with minimizers rather than maximizers
TODO move minus sign to objective
Source code in slimfit/loss.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
LogSumLoss
Bases: Loss
Sums by specified axis, then takes elementwise log, then applies reduction method
Used in combination with maximum likelihood methods
Example
sum along axis 1, then takes elementwise log, then sums the result
LogSumLoss(sum_axis=1, reduction='sum')
returns negative of the reductions are use in combination with minimizers rather than maximizers
Source code in slimfit/loss.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
Loss
Bases: object
Loss function base class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights
|
Optional[dict[str, ArrayLike]]
|
Optional dictionary of weights for each data point. Must match |
None
|
reduction
|
Literal['mean', 'sum', 'concat', 'none', None]
|
Reduction strategy to use. Defaults to "mean". |
'sum'
|
Attributes:
Name | Type | Description |
---|---|---|
reduce |
ReductionStrategy
|
Callable that reduces the loss values. |
Source code in slimfit/loss.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
SELoss
Bases: Loss
Squared error loss
Source code in slimfit/loss.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|